Diophantine Approximations, Diophantine Equations, Transcendence and Applications
نویسنده
چکیده
This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality is from diophantine approximations. Any non-trivial improvement of this inequality shows that certain class of diophantine equations, known as Thue equations, has only finitely many integral solutions. Also, the above inequality can be applied to establish the transcendence of
منابع مشابه
The best Diophantine approximations: the
This brief survey deals with multi-dimensional Diophantine approximations in sense of linear form and with simultaneous Diophantine approximations. We discuss the phenomenon of degenerate dimension of linear sub-spaces generated by the best Diophantine approximations. Originally most of these results have been established by the author in [14, 15, 16, 17, 18]. Here we collect all of them togeth...
متن کاملOpen Diophantine Problems
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...
متن کاملCounting Special Points: Logic, Diophantine Geometry, and Transcendence Theory
We expose a theorem of Pila and Wilkie on counting rational points in sets definable in o-minimal structures and some applications of this theorem to problems in diophantine geometry due to Masser, Peterzil, Pila, Starchenko, and Zannier.
متن کاملA Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007